Search results

1 – 2 of 2
Article
Publication date: 24 May 2013

Premkumar Thodi, Faisal Khan and Mahmoud Haddara

The purpose of this paper is to develop a risk‐based integrity model for the optimal replacement of offshore process components, based on the likelihood and consequence of failure…

Abstract

Purpose

The purpose of this paper is to develop a risk‐based integrity model for the optimal replacement of offshore process components, based on the likelihood and consequence of failure arising from time‐dependent degradation mechanisms.

Design/methodology/approach

Risk is a combination of the probability of failure and its likely consequences. Offshore process component degradation mechanisms are modeled using Bayesian prior‐posterior analysis. The failure consequences are developed in terms of the cost incurred as a result of failure, inspection and maintenance. By combining the cumulative posterior probability of failure and the equivalent cost of degradations, the operational life‐risk curve is produced. The optimal replacement strategy is obtained as the global minimum of the operational risk curve.

Findings

The offshore process component degradation mechanisms are random processes. The proposed risk‐based integrity model can be used to model these processes effectively to obtain an optimal replacement strategy. Bayesian analysis can be used to model the uncertainty in the degradation data. The Bayesian posterior estimation using an M‐H algorithm converged to satisfactory results using 10,000 simulations. The computed operational risk curve is observed to be a convex function of the service life. Furthermore, it is observed that the application of this model will reduce the risk of operation close to an ALARP level and consequently will promote the safety of operation.

Research limitations/implications

The developed model is applicable to offshore process components which suffer time‐dependent stochastic degradation mechanisms. Furthermore, this model is developed based on an assumption that the component degradation processes are independent. In reality, the degradation processes may not be independent.

Practical implications

The developed methodology and models will assist asset integrity engineers/managers in estimating optimal replacement intervals for offshore process components. This can reduce operating costs and resources required for inspection and maintenance (IM) tasks.

Originality/value

The frequent replacement of offshore process components involves higher cost and risk. Similarly, the late replacement of components may result in failure and costly breakdown maintenance. The developed model estimates an optimal replacement strategy for offshore process components suffering stochastic degradation. Implementation of the developed model improves component integrity, increases safety, reduces potential shutdown and reduces operational cost.

Details

Journal of Quality in Maintenance Engineering, vol. 19 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 8 August 2016

Jakiul Hassan, Premkumar Thodi and Faisal Khan

– The purpose of this paper is to propose a state dependent stochastic Markov model for availability analysis of process plant instead of traditional time dependent model.

Abstract

Purpose

The purpose of this paper is to propose a state dependent stochastic Markov model for availability analysis of process plant instead of traditional time dependent model.

Design/methodology/approach

The traditional concepts of system performance measurement and reliability (namely, binary; two-state concepts) are observed to be inadequate to characterize performance of complex system components. Availability analysis considering an intermediate state, such as a degraded state, provides a better alternative mechanism for system performance mapping. The availability model provides a better assessment of failure and repair characteristics for equipment in the sub-system and its overall performance. In addition to availability analysis, this paper also discusses the preventive maintenance (PM) program to achieve target availability. In this model, the degraded state is considered as a PM state. Using Markov analysis the optimum maintenance interval is determined.

Findings

Markov process provides an easier way to measure the performance of the process facility. This study also revealed that the maintenance interval has a major influence in the availability of a process facility as well as in maintaining target availability. The developed model is also applicable to the varying target availability as well as having the capability to handle even the reconfigured process systems.

Research limitations/implications

Considering the degraded state as an operative state, a higher availability of the plant is predicted. The consideration of the degraded state of the system makes the availability estimation more realistic and acceptable. Availability quantification, target availability allocation and a PM model are exemplified in a sub-system of an liquefied natural gas facility.

Originality/value

The unique features of the present study are; Markov modeling approach integrating availability and PM; optimum PM interval determination of stochastically degrading components based on target availability; consideration of three-state systems; and consideration of increasing failure rates.

Details

Journal of Quality in Maintenance Engineering, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 2 of 2